Chapter 2
Functions of several variables

Most financial models include several variables. Portfolio choice depends
on at least two variables, the expected return and the variance of returns
of the portfolio. When n assets are traded on the market, the utility of a
portfolio depends on the n weights of the assets in the portfolio. Functions of
several variables also appear naturally in option pricing. The standard Black-
Scholes option pricing model (1973) allows to evaluate an option contract as
a function of six variables, namely the price of the underlying asset, the
time to maturity, the volatility of the underlying asset, the strike price, the

risk-free rate and the dividends paid on the underlying.

In this chapter, we start by concepts generalizing chapter 2 of part I
which was focused on single-variable functions. First, we need to generalize
some results of chapter 1 of part I. Section 2.1 defines a metric space and
the notion of distance (also called metric) on a metric space. The concept of
distance is very general, but in the present chapter we essentially apply it to
finite-dimensional spaces like R?, to study functions depending on p variables.
Section 2.2 presents continuity and differentiability of functions depending on
several variables and some important results like multidimensional Taylor’s
formulas. These formulas are interesting when it comes to approximating

functions by polynomials ot to stating optimality conditions (see chapters 3
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and 4). Finally, section 3 deals with implicit differentiation and homogeneous

functions.

2.1 Metric spaces

If you are interested in overseas races, like the Vendée Globe Challenge, you
want to know the ranking of boats at regular time intervals. On the website
of the race! you can download a map where the boats are represented on the
ocean and you can also see the total remaining distance. If you think to the
problem a few minutes, you see that it is not a trivial matter to calculate
a distance between two points A and B on a sphere (a reasonable approxi-
mation for our planet). It becomes even more difficult when constraints are
added to the problem (boats are supposed to stay on the water!). The dis-
tance is not the same as the crow flies or for people who possibly need to
climb mountains or stay on oceans. Think to people walking in New York
City, or in major U.S towns. As streets are orthogonal to each other it is not
very useful to know that, the distance between A to B as the crow flies is 5
miles.

In mathematical terms, a distance should be a mapping linking the pair
(A, B) to a positive number and satisfying some reasonable properties. But
this mapping should also be sufficiently general to adapt to many different

contexts.

2.1.1 Metric on a set

Definition 83 A distance (metric) on a set E is a mapping d from Ex E
to R, satisfying:
1)Y(z,y) € Ex E, d(z,y) = d(y,x) (symmetry).

Thttp://www.vendeeglobe.org
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2)Y(xz,y) € EXE, dz,y) = 0 if x =y and d(z,y) > 0 otherwise
(positivity).
3)V(x,y,2) € EXEXE, d(x,z) < d(z,y)+d(y, z) (triangular inequality).

The pair (E,d) is called a metric space.

Part (2) says that if the distance between two elements is zero, they are
identical. Though this property seems very intuitive, we are going to provide
examples showing that this intuition can be misleading. Part (3) says, in
everyday language, that the shortest route between two points z and z is
a straight line. One more time, it seems intuitive when a distance on real
numbers is defined by d(z,y) = | — y|. In this case the distance between
x and z is the length of the segment joining the two points. But recall the

Vendée Globe Challenge! On a sphere, there are no straight lines!

Consider for example the 2-dimensional space R?; the usual metric on

this space, called the Euclidian distance, is defined by:

dol, ) = /(@1 — ) + (@2 — p2)? (2.1)

with © = (21, 22) and y = (y1, ya)-

This metric measures the "physical" distance between x and y. The reader

can easily check this is the case by using the Pythagorean theorem.

Of course, the Fuclidian metric is easily generalized to p-dimensional

spaces as follows:

p

do(w,y) = | D (or = y)’ (2.2)

k=1
with © = (21, 22, ...,x,) and y = (y1, Y2, ..., yp) two elements of RP.

However, our "sailing" example shows that there are many ways to mea-

sure distances on a sphere or in New York City. In this latter case, the real
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Analysis and Linear Algebra for Finance: Part Il Functions of several variables

distance should be defined as d**:
d*(z,y) = |z1 — 1| + |x2 — v

The reader can check that d* satisfies the three properties of definition
83 and that any norm ||.|| on a vector space F induces a metric d on E. d is
defined as:
d(z,y) = [lz =yl
where x and y are two vectors in F. Consequently, a normed vector space is

also a metric space (F,d) when d is the metric induced by the norm on E.

2We assume that streets are either parallel or orthogonal to axes in the two-dimensional

space.
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Example 84 Forecasts by financial analysts

Financial analysts publish earnings and dividends forecasts, and target
prices as well. These forecasts are important for fund managers, banks and
mvestment advisors. Some firms also calculate a market consensus to sum-
marize the forecasts of a set of analysts. For a given firm, the most simple
summary consists in averaging the forecasts of analysts. However, such an
average provides no clue about the dispersion of forecasts. Imagine that there
are two firms Fy and Fy, and two analysts A1 and As. The following matrix

shows the earnings forecasts:

A Ay
M=|F 11 9 (2.3)
F, 2 18

The consensus (average) is 10 for the two stocks, but the forecasts are
much more dispersed for the second stock. Using the consensus to take in-
vestment decisions is more risky and error-prone if individual forecasts are
more dispersed. More generally, assume that the two analysts provide fore-
casts on N stocks and denote (pi,...,pY) et (p?,...,p%) these forecasts. For

each company, i, the consensus is defined as the average:

(i +p7)

N | —

Di =

The risk of the consensus forecast for firm i can then be defined as the distance
d; between the vector of individual forecasts (p}, p?) and the pair of consensus
forecasts (p;, p;) that would obtain if the two analysts were predicting the same

earnings.

4= /(=) + (52 — )

Of course if the forecasts are actually equal, the distance is 0, meaning that
there is no divergence between analysts. The geometric interpretation of this

result is simply that identical forecasts lie on the first bisector of the two-
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dimensional space where the first (second) axis represents the forecasts of the
first (second) analyst. d; is in fact the distance between firm i and the first
bisector. Of course, d; is an oversimplified measure of divergence but it is

important to note that all dispersion measures are built in the same spirit.

In our example, the benchmark is the bisector where all forecasts concern-
ing a gien firm are identical. However, suppose that analysts build their
forecasts using two types of factors. First, there are macroeconomic factors
(or common factors) influencing all firms, and firm-specific factors. In such
a framework, it could be better to neutralize the divergence on common fac-
tors to measure the forecasting risk of firm i. For example, if the first analyst
s much more optimistic than the second about common factors, her forecasts
will be higher on a large part of the firms under scrutiny. The consequence is
that most p; will be under the first bisector and this bisector is not the good
benchmark! It is necessary to find another benchmark taking into account the
divergence about macroeconomic factors. One of the popular methods to do so
is Principal Component Analysis which allows to find the line D minimizing

the following quantity:
N

Zd(lha D)

i=1
We do not elaborate in more details this example but the reader should

remember that this topic is extensively studied in finance research.

2.1.2 Open sets in metric spaces

Open and closed sets in R have been introduced in chapter 1 of part I. These

concepts are still valid in metric spaces with minor changes in the definitions.

Definition 85 Let (F,d) denote a metric space. An open ball centered at
x with radius r, denoted B"(x,7), is the set of elements y € E satisfying
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d(x,y) < r. This set can be formally written as:
B’ (x,7) ={y € E such that d(z,y) < r}

A closed ball centered at & with radius r, denoted B(x,r), is the set of

elements y € E satisfying d(x,y) < r. This set can be formally written as:

B(z,r) ={y € E such that d(z,y) <r}

In the set R of real numbers, equipped with the usual metric, the open
ball centered at « € R with radius r is simply the interval |x — r;x + 7|

The corresponding closed ball is the closed interval [z —r;z +r]. As a
consequence, the concept of an open ball in a metric space is the natural

generalization of open intervals in R.

Definition 86 Let G be a subset of a metric space E.
x € G is interior to G if there exists an open ball centered at x with
radius r > 0, satisfying B" (x,r) C G.

G is an open set in E if any element in G is interior to G, that is:
Vo € G,3r € R%. such that B’ (z,7) C G

As before, we deduce immediately the definition of a closed set.

Definition 87 A subset F' of a metric space E is closed if the complement
F¢={x € E such that x ¢ F'} is an open set.

The disc G C R? that appears on figure 2.1 is open if the boundary circle
is not in G; it is closed otherwise.

The following proposition is valid in any metric space.

Proposition 88 a) Any union of open sets in E is an open set and any

finite union of closed sets in E is a closed set in E.
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Figure 2.1: Disc in the plane

b) Any intersection of closed sets in E is a closed set and any finite
intersection of open sets in E is an open set.

¢) E and ) are simultaneously open and closed.

Proposition 88 shows that there is an asymmetry between open and closed
subsets. In (a), the union is considered over any number (finite or not) of
open subsets but only over a finite number of closed subsets. In (b), the
intersection is over any number of closed subsets but over a finite number of

open subsets. The difference may be illustrated by the following example;

consider the sequence of open intervals (} —%; % [ ,n € N*). We get:
11
EHED
neN*

The set {0} is a closed subset of R but is written as an infinite intersection
of open subsets.
The other topological concepts are generalizations (more or less intuitive)

of what we presented in chapter 1 of part I for the set R. We briefly recall
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these definitions for the sake of completeness.

Definition 89 a) The closure of a subset H of a metric space (E,d), de-
noted H, is the smallest closed subset such that H C H. It is also the inter-
section of all closed subsets containing H.

b) The interior of a subset H of a metric space (E,d), denoted H, is
the largest open subset such that H C H, or the union of all open subsets
included in H.

c) The exterior of a subset H of a metric space (E,d), is the interior of
the complement of H in E.

d) The frontier of a subset H of a metric space (E,d), is the set of

elements in E that are neither in the interior nor in the exterior of H.

s ebook 1sprobucen with iText®
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All these definitions were already given in the framework of the metric
space R. We need now to add a more abstract concept which will be useful

later on.

Definition 90 a) A subset H in E is a dense subset of E if H = E where
H is the closure of H.

b) A metric space (E,d) is separable if E contains a dense countable
subset®.

Another way to say the same thing is that for any x in F, there exists a

sequence in H converging to x. In short:

Ve € FE,3(y, € H,neN), lirf d(yn,x) =0 (2.4)
or
Ve € E,Ve>0,3z" € Hd(z",z) <e¢ (2.5)

Property 2.5 shows that saying a set is dense has something to do with an
approximation. For any element x of E and any distance ¢, it is possible to

find an element of H as close as desired (at a distance lower than ¢) of .

Example 91 The most standard (which also proves the most useful) example
is the set Q of rational numbers which is dense in R. For example, in any
calculator, numbers like m or e are approzimated by rational numbers (that is
ratios of integers), with the desired level of accuracy. Doing so is relatively

safe because Q s dense in R.

In R, a set is bounded if it is included in an interval with finite ends.
This definition can be easily adapted to metric spaces, using balls instead of

intervals.

3Recall that a set A is countable if one can "count" its elements. In other words A is
countable if there exists a bijection between the set N of positive integers and A.
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Definition 92 A subset G of a metric space (E,d) is said bounded if it is
included in a ball B(x,r) with r < 4+o00.

A counterintuitive result is that boundedness depends on the metric. A
set can be bounded for a given metric and unbounded for another metric.

For example, there exists on R a metric called the discrete metric , defined

by :
lifx#y
d*(z,y) =
(z,9) { 0 otherwise

The interval |—oo; 5] is bounded under d* because it is included in B*(0, 1).
This mapping d* gives almost no information about the location of points in
the metric space. We can only say if two elements are identical or not when
we know the distance between them (0 or 1).

Finally, a compact set in R was a bounded and closed subset. It is still
true in RP, but it is false in general metric spaces?. In chapter 2 of part I we
saw that a function defined on a compact set reaches its bounds and possesses
a maximum and a minimum. This proposition is still valid for functions of

several variables considered in this chapter.

2.1.3 Sequences in metric spaces

To define the convergence of a sequence in R, we used absolute values |z,, — z|,
where x denoted the limit. The same concept in metric spaces uses dis-
tances, in particular in RP. Nothing surprising here because the mapping

(r,y) — |z — y| is a metric on R.

Definition 93 Let (E,d) denote a metric space, (x,,n € N) a sequence of

elements of E and x an element of E.

4In a general metric space, a set A is compact if, from any sequence of elements of A,
it is possible to extract a convergent sub-sequence. In this book we will not need such a
general definition.
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(zn,n € N) converges to z iflim, ., d(z,,z) = 0. We writelim,,_, o x, =

(xn,n € N) is called a Cauchy sequence if lim; ;. d(x;,x;) = 0.

Proposition 48 in chapter 1 of part 1, related to the convergence of Cauchy
sequences in R, does not remain valid in general metric spaces, but remains
true in £ = RP.

2.2 Continuity and differentiability

This section introduces continuity and differentiability of functions defined
on a subset of R? and taking their values in R. The set R? is endowed with
the Euclidean metric, unless otherwise stated. Tools of the previous section
will allow to generalize the notions of limit, continuity and differentiability
presented in part I for functions of one variable. Taylor’s formula is also

generalized.

2.2.1 Limits and continuity

Definition 94 Let f be a function defined on an open set D C RP. f has a
limit b € R, at a € D if, for any sequence (z,,n € N) in D that converges

to a, the sequence (f(x,),n € N) converges to b. We write:

lim f(x) =0

r—a

This definition is almost identical to the definition of a limit in chapter
2 of part I. However, here the convergence of (x,,n € N) refers to definition
93.

Definition 95 Let f be a function defined on an open set D C RP. f is
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continuous at ©* = (z7, ...,x;) e D if:

lim f(z) = f(z")

r—x*

Here too, the definition is very close to the definition of continuity for
functions of one variable. The only difference lies in the use of a metric on
RP. Moreover, it turns out that left and right continuity are meaningless in
multidimensional spaces.

Remember that lim, .« f(z) = f(z*) can also be written as:

lim

r—x*

f@) = fa)] =0 (2.6)

Therefore, continuity could be defined in a much more general way for func-
tions f defined on an open subset D of a metric space (E, d) and taking values
in another metric space (F,dp). In this general framework, f is continuous
at z* € E if:

lim dp (f(z), f(z%)) =0

We just replaced the metric on R (defined by the absolute value | f(x) — f(z*)])
by dr (f(x), f(z*)). In particular, we encounter this situation when consid-

ering functions defined on R? and taking values in R™.

2.2.2 Partial derivatives

One of the essential differences between functions of one and of several vari-
ables lies in the concept of derivative. Remember that for f : R — R, the

derivative at g is defined as follows:

f’(%) — lim f(xO + h) - f(mo)

h—0 h

There is no obvious generalization for functions of several variables be-

cause g € RP, p > 1. In fact, h should also have p components, and dividing
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by h would be meaningless. Therefore, for a function depending on p vari-
ables, we define p partial derivatives, each one being defined as a derivative

with respect to one variable, the other variables being assumed constant.

Definition 96 The partial derivative of f at x*, with respect to the i-th

variable, is the limit, if it exists, defined by:

flay, o ai +hy o xy) — f(or)

lim
h—0 h
Alternative notations are gji (x*) or sometimes f, (x*).

We know how to derive a single-variable function. A function of p vari-
ables is a function of one variable when p — 1 variables are held constant. So
the definition works as if p — 1 variables where not changing. In fact, let g
be the function defined by:

* * * *
g(w) = fa, ., 0, 2,27, 4, ..., 7))
the derivative of g at 2] writes:

9@ +h) — g(x7)

R T
. f@d, e wp b ) — f(at) Of

What we just wrote for the i-th variable can be written the same way for
the other p — 1 variables. Consequently, we get p partial derivatives (when
the corresponding limits exist).

In financial and economic models, it is common to assume that partial

derivatives are continuous functions. Such functions are said C'-functions.

Example 97 Let f be a function on Ry xR, taking values in R and defined
by:

r = (x1,22) — f(x) = /2129
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At any x* € R x R this function has partial derivatives defined by:

of o _ 1 |x3
8x1(x)— 2\ 3

Of oy _ 1 [r

81’2(&:) T2 l’_

In fact we can write:

fz) = Va/z,

To compute g—gfl(x*), we consider that \/x3 is a number equal to \/x3 (let
us denote ¢ this number) and we compute the derivative at x3 of the one-

variable g(x1) = ¢\/x1. This derivative is equal to:

(7)) = ¢ x !
N

Replace now c by its value, that is \/x5. The result is:
af 1 [xb
1%\ L 2
9a) = ) =5/

The computation of g—xj;(x*) can be done in the same way, replacing /1
by a number b equal to \/z57. The single-variable function is now denoted m

and defined by m(x2) = b\/T5. M’ is then calculated as usual.

(as) =bx —— = Ly 2 L /5

2\/1’—; a 8x2

Definition 98 The p—dimensional vector %(:c*),z’ =1,...,p, 1s called the
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gradient of f at x*. It is denoted V f(x*) (spell nabla for V ):

V(") =

V f(z*) is an element of the vector space RP. Therefore, V f(z*) denotes
a matrix with p rows and 1 column, containing the partial derivatives of f

valued at x*.
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2.2.3 Derivatives of compound functions

Calculation of partial derivatives of compound functions obeys the same rules
as the ones used for functions of one variable, but the formulation is a bit
more complex.

The proposition hereafter presents the case of functions depending on two

variables.

Proposition 99 Let f, g, h three continuously differentiable functions, de-
fined on a open set D C R2. We have:

9 Of du f dv

- [f (9(z,y), h(z,y))] = guor T dvor

where uw = g(x,y) and v = h(x,y). The partial derivative with respect to the
second variable y is defined accordingly (replacing Ox by Oy).

Example 100 Let f,g and h be defined as follows:

f(u,v) = exp(uv) (2.7)
g(z,y) = z+y (2.8)
h(z,y) = =—y (2.9)

First, calculation of% and g—f :

of
= 2.1
o pw) (2.10)
of
- = 2.11
= upw) (2.11)
Second, calculation of % and % :

ou v

ou__ v 2.12

Ox Ox (2.12)
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Finally

9 [f (g(z,y), k()] = (¢ —y)exp(a® —y?) + (x4 y) exp(a® — (F)3)

Ox
= 2wexp(2?® —1?) (2.14)

Of course, in this example it would have been easier to directly replace u

and v by their values and start with f(z,y) = exp(2? — y?)

2.2.4 Differential of a function depending on several

variables

In chapter 2 of part I, a C''-function was approximated at x + h by f(z) +
hf'(x) (first-order approximation). The mapping h — hf'(z) is linear. The
differential of a function of several variables carries the same idea. However,
starting from x € RP, we can move in different directions. In other words,

writing x + h refers to a vector like

1+ hy
T+ h=
p + hy

We then refer to a displacement in the direction of vector h.

The fact that partial derivatives exist is not sufficient to ensure that a
function of several variables is continuous. There exist some pathological
cases where the function possesses partial derivatives according to definition
95 but is not continuous. To solve this difficult question we need a little
bit more, that is differentiability. We provide hereafter the definition of this
word but in the sequel of the book we will in fact use a stronger (but much

more intuitive) assumption.

Definition 101 A function f defined on an open subset D of RP is differ-
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entiable at x € D if there exists a € RP such that:

flx+h) = +Zaz () + [|h]| e(h)

with limy, 0 e(h) = 0.

Remember that ||h| denotes the norm of vector h. In the limit, we used
bold characters for the null vector to emphasize the fact that h is a vector, not
a number. In the remaining of the text, we use proposition 102 to simplify

the formulation of propositions.
Proposition 102 Any C! function at x is differentiable at x.

In the following definitions and propositions we assume that functions
are C! over the interior of their domain. Mathematicians would say that
weaker assumptions are better, but assuming C'-functions is general enough

for economics and finance.

Definition 103 Let f be a C'-function defined on an open set D C RP. The
differential of f at x* is the linear form, denoted df,-, defined on RP as

follows:

df o (R Z 70,
with K = (hy, ..., hy) .

Using notations of chapter 1, df,«(h) writes as the following inner product
in RP :
dfp«(h) =< V f(z¥),h >

Proposition 79 of chapter 1 (Riesz representation theorem) allows to say

that V f(z*) represents the linear mapping df,~ because, for any h:

df e (h) =< Vf(2*), h >
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The cases p = 1 and p = 2 reveal the intuition behind the definition
of differentials. Assume that the components of h are close to 0; df,.(h)
then approximates the difference f(z* + h) — f(z*). If p = 1,hf'(2*) is a
first-order approximation of f(z* 4+ h) — f(z*). The derivative f'(z*) also
denotes the slope of the tangent to the curve representing f. If p = 2, the
geometric interpretation of the differential is the same; the mapping h —
dfe+(h) = hlg—afl(a:*) + hg%(ﬂ?*) approximates the surface f at z* by the
two-dimensional space tangent to the surface at z*. As f is a C'-function, it
is differentiable; therefore this approximation is valid when the norm of A is

small, that is when x* + h is close to z* in the space RP.

Example 104 Interpretation of differentials
Come back to the function f(x) = \/T1xs and define dfy-(h) for (z*)" =
(1;1). Example 97 indicates that:

Bon () = 5 (ha + o)

The set of all points such that f(x) = 1 is called a level curve of f°.
This set contains x* and the equation \/r1xy = 1 implies that elements in

this set satisfy:

To9 — —
T

On figure 2.2, x1 (x3) is the coordinate on the horizontal (vertical) axis.
The slope at (x1,22) = (1,1) is —1 because the derivative of g(x1) = 1/x1
at x1 = 1 is equal to —1. Moreover, the coordinates of the gradient of f are
(1/2;1/2). The arrow on the figure gives the direction of the gradient; it lies
on the line x1 = x9. This gradient is orthogonal to the tangent to the level
curve. This remark is not a surprise because the level curve is the curve along

which the function f(xy1,x3) is constant, equal to 1. Therefore, moving from

®The general definition is the following: a level curve ¢ € R of a function f is the set
of elements x satisfying f(z) = c.
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x* to x* + h along this curve keeps the differential equal to 0, that is:

of of ,
axl hl + athQ =0

Using the inner product, this equation writes:
< Vf(z*),h>=0

In the neighborhood of x*, this relationship means that the gradient and
the tangent to the level curve are orthogonal.

If f represents the utility function of an investor, the level curve f(x1,xq) =
1 defines the pairs of consumed quantities generating the same level (equal to
1) of utility. The set of all these pairs is called an indifference curve.

At (1,1), the investor is indifferent if the quantity of one good marginally
increases while the quantity of the other marginally decreases. At y* = (2,1),

the story is different. The differential writes:

1
df,+(h) = V/2hy + Ei@
For df,«(h) to be zero and the investor be indifferent to a substitution
between the two goods, it is necessary that he obtains twice as much of good
2 than the quantity of good 1 he gives up. This ratio is the well-known

marginal rate of substitution between the goods.

Differentials follow the same rules as derivatives, as can be seen in the

following proposition.

Proposition 105 Let f and g be two C*-functions, defined on an open set
D C RP, and denote x* an element of D. We have:

1) d(f+9)g = dfar + dga-

2) d(af),. = adfy for any a € R

3) d(fg)z = f(27)dgar + g(2")dfo
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Figure 2.2: Gradient of f(z1,x2) = z122

4) If g(z*) # 0, then d (5) — g(x*)dfwg*(;*f)(;v*)dgz*

xT*
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(1) and (2) are obvious as consequences of the definition of partial deriv-

atives. To prove (3), just write:

o) = 3 A =3 (o)) + 1)L @) ) 1

=1 =1

’. o "o
= 0 2Lt 7)Y S (ah = Fa g+ o)
i=1 g 1

The proof of (4) uses the same method, applying the rules of derivation

for ratios of functions.

Alternate notations In most academic papers and economic textbooks,
authors do not write h — df,(h), even if it is the right way to understand
that df, is a linear mapping. In most cases, authors write:

af of

df (x)

This simplified notation means that dzy, dxzs, ..., dz, correspond to h;,7 =
1,...,p and df (z) means df,(h), the differential of f evaluated at x.

2.2.5 The mean value theorem

In chapter 2 of part I, Rolle’s theorem says that if a function g, defined on
[a; b] , is differentiable on |a; b[, there exists ¢ € |a; b satisfying ¢(b) — g(a) =
(b—a)g'(c).

A similar result is valid for two-variable functions. However, one needs
to be prudent in interpreting the result because of the existence of several
partial derivatives.

The following example shows that the intuition is the same as in the
single-variable case.

Denote f the function defined by :
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f(l’,y) :xz_yz

The graph of f over the square [1;3] x [1;3] appears on figure 2.3.

Figure 2.3: The function f(x,y) = 2% — y?

f satisfies f(1,1) = 0 and f(3,2) = 5. We can decompose f(3,2)— f(1,1)

as follows:
f3,2) = f(1L,1) = f(3,2) = f(1,2) + f(1,2) = F(1,1) (2.15)
Let h(x) = f(z,2) and k(y) = f(1,y). Equation (2.15) writes:
f3,2) = f(1,1) = h(3) = h(1) + k(2) — k(1)

We now apply Rolle’s theorem (chapter 2, part I) to the functions h and
k. Therefore, there exist ¢; € |1;3] and ¢3 € ]1;2[ such that:

h(3) —h(1) = (3—1)x (1)
k2) — k(1) = (2—1) % K(c2)
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h'(c1) is the partial derivative of f with respect to x, evaluated at (cq;2).
k'(c2) is the partial derivative of f with respect to y, evaluated at (1, cs) .
The mean value theorem hereafter formalizes the idea of the above ex-

ample.

Proposition 106 Let f be a C*-function, defined on D = |ay; by[ X Jag; by| C
R? and (z1,v1), (T2, y2) be two elements of D.
There ezists (z1,22) € D such that:

Faas1) = Flonmn) = (@~ 205 (o) + (02— )5

(1’1, 22)
In this proposition, we restrict the domain to a rectangle of R%. This

assumption is not the most general but the key point is that (z1, 25) is in D.

2.2.6 Second-order partial derivatives

In the preceding section we showed that a p-variable function has p first-order
partial derivatives. The calculation of second-order partial derivatives needs

to derive any of the p first-order derivatives with respect to any of the p
of

dz;

derived with respect to each variable z;,j = 1,2, ...,p. As a consequence, the

variables. More precisely, each partial derivative 5+(x),i = 1,2, ...,p can be
function possesses p? second-order partial derivatives. They are organized in

a (p,p) matrix called the Hessian matrix or, in short, the Hessian of f.

Definition 107 Let f a C'-function, defined on an open set D C RP. The
Hessian matriz (or Hessian) of f at x*, denoted H¢(x*), is the (p,p)

matriz defined by:

] *f . .
Hya) = Lﬂxﬁm(x )} i=
0% =
‘7:

where 8{?3@ (x*) = % (%(m*)) is the partial derivative with respect to x;

(when it exists) of the partial derivative of f with respect to x;.

1,....p
1,...p
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Diagonal elements of H(z*) are denoted:

Pf o _Pf,

Proposition 108 If the second-order partial derivatives of a function f are
continuous at x* (f is called a C*-function), the Hessian matriz is symmetric,

that is:
at is o o

This proposition shows that when calculating the second-order deriva-
tives, the order you choose to derive does not matter, the final result, either

2 2 . . . . .
0T (%) or =24 (2*), is the same. The Hessian matrix is important when
Ox;0x; Ox;0x; ’

solving optimization problems, especially to get sufficient conditions of op-

timality (chapters 3 and 4). Fortunately, in finance problems, the Hessian

matrix is always symmetric.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.
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Example 109 Coming back to the function defined in example 97, that is
f(z) = /r129

we calculated:

of

oy

Of oy _ L joi 1 o1 -l
o) T g\ T )t @)

The Hessian matrix is then obtained as follows:

() =

0 f 1 _3 1 1 [a
4 (¥ - __ ¥\ T2 N2 — __ 4
o2 f . 11
) = =
0x101, 4\ i3
0 f 1 1,3 1 a3
4 (¥ - __ *\2 N\NT2 — -1
52 = gDt - 8
o2f . 11
) = -
O0x9011 4\ iz
In short we write Hy(z*):
1 Jmoo1 )1 w3
1/ 1 1 ju dyaxjas | 1 =4
4 iz} 4z 5 Ta

2.2.7 Taylor’s formula

When a function f depends on a single variable, we know (chapter 2, part I)

that the graph of f can be approximated by a straight line or by a curve rep-
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resenting a polynomial. Taylor’s formula allows to calculate the coefficients
of this polynomial.

Differentials allow to approximate C!-functions of several variables at
the first order. To approximate functions at higher orders, the right tool
is a Taylor’s series expansion. We restrict our presentation to second-order
approximations because such a choice covers 99.9% of economic and financial

models.

Definition 110 Let § and v two functions depending on a single variable

h. We say that B has the same order of magnitude as v in the neighborhood

of 0, and we write § = O(7), if limy,_ % < +o00. In the same way, [
is negligible with respect to v in the neighborhood of 0 if hmhﬂo =0. In

this case, we note B = o(y). These two notations O and o are called Landau

notations.

Using Landau notations allows to simplify formulas. g = O(v) means
that S(h) and y(h) are comparable in the following sense. The function S is
not infinitely larger (smaller) than the function v when h tends to 0.

f = o(vy) means that [ is negligible with respect to v when h tends to 0. If
such a situation occurs, that is 5 = o(y), the sum 5(h)+~(h) is approximated
by v(h) because (h) is negligible. Of course this approximation is valid only

if A is close to 0.

Proposition 111 Taylor’s formula
Let f denote a C*-function, defined on an open set D C RP, and (x,x*) €
D x D such that the line joining x and x* is in D. We have:

fl@) = +Z ) g ()

p P o ) 2
+%;;($z — ;) (2 — 7) axiaij (") + o0 (Z (z; — x) )
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The expression o (Y i, (z; — z}

2)2) means that, when the distance be-

tween x and x* tend to zero, all terms of order greater than 2 are negligible
with respect to first and second-order terms that appear in the formula as
coefficients of the partial derivatives. This Taylor’s formula allows to approx-

imate a function of p variables by a second-degree polynomial.

Matrix notation Using the Hessian matrix and the gradient of f shortens

the above formula as follows:
* * * 1 * * * *
f(x) = fa")+ < Vf(z"),z—2" > +§(x—56 ) Hy(a*)(x—a*)+o(||z — z*||)

This alternative formulation is based on notions presented in chapter 4
of the part I and in chapter 1 of the present book, (inner product of vectors

or product of matrices).

Example 112 Let [ be a function defined on R? taking values in R, and
defined by :

1
f(z,y) = exp <—§ (2 + y2))
The partial derivatives of f are equal to:

g_i = TTexp (—5 (" + 3/2)) ;% = —yexp (—% (2? +y2))

2 2
o = e (3670 SE = 00 ew (<3 0 4)

>*f _ 2 2
o0y TY exp <—§ (a: —i—y))

Applying Taylor’s formula at (0,0) leads to write:

1
f(hy,hy) =1— 5 (17 + R3] + o (kT + h3)

Download free eBooks at bookboon.com


http://bookboon.com/

K000
&0‘0‘0“0000
AR
“:::“:“‘““:‘::‘?:
0%
“O‘o "0‘0‘0
SIS
(XS RIHHKIK
3 f::::::.w.:::»‘o:o. ‘o:::,’

%
XK

% %
s
KEIING

BRI
R
RS
IR

Figure 2.4: Approximation error

Figure 2.4 shows the difference between f and the second-degree polyno-
mial when hy and hs move between —0,5 and 0,5. This difference is repre-
sented by o (h? + h3). We observe that, even "far" from (0,0), the approzi-
mation is quite good. The error is not larger than 0.03 with the function being
valued 1 at 0. Of course, this case is specific; choosing a more complicated

function could lead to approximations of lower quality.

2.2.8 Convex and concave functions

We presented in the chapter 2 of part I the definition of a convex single-
variable function f defined on an interval I C R. You will see in the following
that the definition is almost the same when f depends on p variables, except
for the domain of definition D. Of course, D must be included in R” but we
have to be sure that the definition of a convex function is meaningful. It is

the reason why we first introduce convex sets in a vector space like RP.
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Definition 113 Let C' be a subset of RP. C' is convez if:
V(z,y) € C x CVa € [0;1],az+ (1 —a)y e C

The geometric interpretation of this definition is simple If any two ele-
ments x and y are in the same convex set, all the segment joining = and y is
also included in C. Remark in passing that if p = 1, C' is an interval.

R? being a vector space, the combination ax + (1 — )y in definition 113
is a linear combination of the vectors x and y. This linear combination has
two specific features; the coefficients o and 1 — o are positive and their sum

equals 1. Such a combination of vectors is called a convex combination.
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We can now rigorously define convex and concave functions.

Definition 114 1) Let f be a function defined on a convexr domain D C RP.
f is a convex function on D if, for any o € [0;1] and any couple (z,y) €
D x D, we have:

flaz+(1—a)y) <af(z)+(1-a)f(y)

2) Under the same assumptions on D, [ is a concave function on D if
the inequality is reversed.

3) The function f is strictly convex (concave) if the inequality is strict
in part 1 (2) of the definition.

Assuming convex or concave functions is very common in finance or
economic models. Utility functions are usually concave and cost functions
are convex. These assumptions make easier solving optimization problems.
These issues are addressed in chapters 3 and 4.

In chapter 2 of part I, we characterized convex (concave) functions by
positive (negative) second-order derivatives. For a function f depending on
p variables, the corresponding result uses second-order partial derivatives, by

means of a condition on the Hessian matrix of f.

Proposition 115 Let f be a C?-function defined on a convex open domain
D C Rp.

1) f is convex (concave) on D if and only if the Hessian matriz H(x) is
positive (negative) semi-definite at any x € D.

2) If Hy(x) is positive (negative) definite, f is strictly convex (concave).

Recall that positive semi-definite matrices have been presented in chapter
4 of part I (definition 52).
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Example 116 Consider a two-goods economy; an agent is characterized by

the following utility function U defined on D = R x R

U(z) = In(zq27)

where x = (1, T3) s the vector of consumed quantities and U(x) measures

the welfare generated by consumption. U is strictly concave on D. In fact,

we have:
w1 1
6:1:1 N T 8352 N i)
0*U B i 02U B i
dx? x? ord a3
0*U
=0
8x18x2
It follows:
_1 0
Hy(w)={ =
: ( 0 -3 )

We can check that Hy(z) is negative definite by computing y* Hy(x)y,

where y s a non zero vector in R2.
0 _ Y1 Yo
ri’ 3

8
ST L

yTHU(x) = (3/1442)( 1
0 -2
2

i Y2 hn :_y_%_y_S
it

T
JHy )y — (——,
I% I% y2

We get y* Hy(x)y < 0 showing that U is strictly concave. The interpreta-
tion of the concavity of U is the same as the one provided for single-variable
functions. The utility obtained by consuming one more unit of a given good

decreases with the quantity already consumed.
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2.3 Implicit and homogeneous functions

2.3.1 The implicit function theorem

Several economic variables are often linked by complex relationships so that
it is impossible to express these relationships explicitly. The most well-known
example of such a relationship is the definition of the internal rate of return
or, equivalently, of the yield of a coupon-bearing bond. The yield r of a
bond is linked to the price p and to the future payoffs Fi, ..., Fr of the bond
(coupons plus reimbursment price). Though economically intuitive, it is
impossible to express r as an explicit function of the variables (p, Fi, ..., Fr).
In the same spirit, the utility provided by the consumption of a bundle of
goods (1, ..., z,) is measured by a utility function U(zy, ..., z,) taking values
in R. For a given utility level u, the equation U(xy,...,z,) = u creates a
relationship between x; and the p — 1 other variables. In general, no explicit
formulation exists for this relationship.

In this section, we develop some results allowing to measure the sensitivity
of a given variable with respect to variations in other variables. We start by

the most simple case where a function F' only depends on two variables.

Definition 117 Let F' be a function defined on an open subset D C R%. The
equation F(x,y) = 0 defines an implicit function if there exists a function

g(x) =y, defined on an interval and taking values in an interval such that
F(z,g(z)) =0.

Of course the relationship between x and y is said implicit when g cannot
be defined explicitly.
Proposition 118 Implicit function theorem (2 variables)

If F : R? — R is C' and defines an implicit function g by means of the
relationship F(z,y) = 0, we have :

0y 5
g(@—&——@
dy
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The notation g—g may seem surprising: it is not really a rigorous way to

write such a derivative but this formulation is common. It is the reason why

or
ox

look precise enough because we do not specify the values at which the partial

we use this expression. In the same spirit, the notations and %—Z do not
derivatives are calculated. But these notations are commonly used as long
as they do not introduce confusion or ambiguity. In our example, we know
that the partial derivatives are calculated at (x,y) such that F(z,y) = 0.
Theorem 118 is useful to perform comparative statics. Being given the
value of a function of two variables (production function, utility function, net
present value, etc.), comparative statics tests the impact of the variation of

one variable on the value of the other variable.
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Example 119 The internal rate of return

An investment project needs an initial outflow followed (in general) by
inflows at future dates. Let Fy denotes the initial negative cashflow and
Fi,t = 1,...,T the future positive cashflows, where T" denotes the maturity
date of the project. The met present value of this project, discounted at a
rate r, 1s defined by:

Fy
(14 7r)t

NPV (r) = XT:

t=0

The internal rate of return (IRR) is the rate r* satisfying N PV (r*) =

This equation defines an implicit relationship between the discount rate r*
and any given cashflow of the project. This relationship is called an implicit

function because you cannot write r* as follows:
= f(T,F,t=0,..,T)

But the implicit function theorem allows to calculate the sensitivity of r*

with respect to variations in any given cashflow. For example:

ONPV
or __om 1 (2.16)
ONPV ONPV :
aFO or or
We can also write:
ON PV T 4R
= — — 2.17
or — (14 r)ttt ( )

Equations (2.16) and (2.17) lead to:

or B 1
OFy ST tFy(1+7)-t1

A too superficial look at this formula could let the reader think that the IRR
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is an increasing function of the initial cost of the project because the deriv-
ative is positive. But remember that Fy < 0. As a consequence, a marginal
increase in Fy is in fact a marginal decrease of the cost of the project, every-
thing else equal. Proposition 118 can be generalized to p-variable functions
almost without modifications. Any equation F(z) = 0 where x = (x4, ..., xp)

defines an implicit function between components x; and xj for any (j,k) in

{1,...,p}2.

Proposition 120 Implicit function theorem (p variables)
Let F be a C-function, defined on an open set D C RP. Assume that
F defines an implicit function linking x; and ), by means of the equation

F(z) =0. It follows that:

oF
Oz o,
Ar. | OF
Ox; B

xy is the k-th variable and x; the j-th variable. This proposition is not
very different from proposition 118 because the other variables do not play
any role. It is as if we were dealing with a two-variable function, the (p — 2)

others being kept constant.

2.3.2 Homogeneous functions and Euler theorem

Homogeneous functions are common in economics. The most well known
example is the production function of a firm. When all production factors
are doubled, the usual assumption is to consider that production will double.
In such a situation, the function is said homogeneous of degree 1. A second
example in finance is the price of an option contract when considered as a
function of two variables, the strike price and the underlying price. When
you double the two, the price of the option doubles. The definition below is

the generalization of this intuitive example.

Definition 121 Let f be a function defined on a set D C RP, taking values

in R, and let D* denote a subset de D. f is homogeneous of degree v on
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D* if:
Ve e D" VYA e R, Az € D and f(Ax) = \“f(x)

When a function is homogeneous of degree o > 1, doubling the inputs
more than doubles the output. For production functions, it is the sign of
economies of scale. The unit cost of production decreases when produced
quantities increase.

A homogeneous function of degree 1 satisfies f(2x) = 2f(x); this equality
is also true for a linear function. However, if linear forms are homogeneous of
degree 1 the reciprocal is false. The function f(z1,22) = \/Z122 is a simple
counterexample. Of course, f is not linear but is homogeneous of degree 1
because f(2x1,2x2) = /221 X 2wy = 2\/T1@3 = 2f (21, T2).

The following proposition shows that a homogeneous function has homo-

geneous partial derivatives. Only the degree of homogeneity changes.

Proposition 122 Let f be a C! function defined on an open set D C RP,
homogeneous of degree o« on D* C D. The functions Of /Ox; are homogeneous

of degree o — 1 on D*.
Proof. We can write:

) )
oz, (A2l =5

fQx) =2 f(x) = (A f ()] (2.18)

Let h be defined by x — f(A\x). h writes fog where g(x) = Az. Consequently:

O (ray =AY

8xi ZT;

(Az)

The linearity of derivations leads to:

0 ... o Of
A @) = XS (@)
It implies: of of
o, (Az) = A“_I@—%(fv)
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This equality shows that % is homogeneous of degree « — 1. m

When functions are homogeneous of degree 1 (for example f(z1,x2) =
\/Z1Z3), the proposition means that partial derivatives are homogeneous of
degree 0. In fact we have:

of 1 [z

or, 2\ =y
Multiplying x; and zo by a non-zero number does not change the value
of 86—;1. If f is the utility function of an investor, the proposition shows that
the marginal utility provided by the consumption of a marginal quantity of
good 1 is the same when the quantity already consumed is (x1, x2) or when it
is (Az1, Azg) with A > 0. Geometrically, this result is not surprising because,
along the line x1 = x5, f is a linear function. In fact, f(z,x) = x for any x.
The specific features of homogeneous functions lead to the Euler theorem
that links the value of a homogeneous function at a given point to the values

of its partial derivatives at this same point.

Proposition 123 The Fuler theorem
Let f be a C* function defined on (]Rj)p, homogeneous of degree a.. At

any x € (R’jr)p, we have:
p
> g () = afi@)

We only provide hereafter a sketch of the proof. By definition of homo-

geneity we know that:
fx) = A" f(x) (2.19)

Each side of equation 2.19 is a function of A (that is the point!). The
derivatives of the two sides with respect to A must be equal. Assume that h

is a small real number such that:

F(A+h)z) ~ f(Ox) + Z hng—i(/\m)
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We neglect the second-order terms whose order of magnitude is A% because

they are negligible in the following limit.

of - f((A+h)x) = f( i ~ a1 Of

i=1 i=1

The last equality is obtained because g—:fi is homogeneous of order a — 1
by proposition 122.
The derivative of the right-hand side of equation (2.19) writes:

aX* ! f(x)
As a consequence we obtain:
P
ZZ:; xi)\a_lg—i(x) = a)\a_lf(m)

Simplifying by \*~! leads to the result:

> il @) = af)

i=1
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